PT - JOURNAL ARTICLE AU - Elliott S. Chiu AU - Sue VandeWoude TI - Endogenous feline leukemia virus siRNA transcription may interfere with exogenous FeLV infection AID - 10.1101/2021.01.12.426481 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.01.12.426481 4099 - http://biorxiv.org/content/early/2021/01/13/2021.01.12.426481.short 4100 - http://biorxiv.org/content/early/2021/01/13/2021.01.12.426481.full AB - Endogenous retroviruses (ERVs) are increasingly recognized for biological impacts on host cell function and susceptibility to infectious agents, particularly in relation to interactions with exogenous retroviral progenitors (XRVs). ERVs can simultaneously promote and restrict XRV infections using different mechanisms that are virus- and host-specific. The majority of endogenous-exogenous retroviral interactions have been evaluated in experimental mouse or chicken systems which are limited in their ability to extend findings to naturally infected outbred animals. Feline leukemia virus (FeLV) has a relatively well-characterized endogenous retrovirus with a coexisting virulent exogenous counterpart and is endemic worldwide in domestic cats. We have previously documented an association between endogenous FeLV LTR copy number and abrogated exogenous FeLV in naturally infected cats and experimental infections in tissue culture. Analyses described here examine limited FeLV replication in experimentally infected peripheral blood mononuclear cells. We further examine NCBI Sequence Read Archive RNA transcripts to evaluate enFeLV transcripts and RNA interference precursors. We find that lymphoid-derived tissues, which are experimentally less permissive to exogenous FeLV infection, transcribe higher levels of enFeLV under basal conditions. Transcription of enFeLV-LTR segments is significantly greater than other enFeLV genes. We documented transcription of a 21-nt miRNA just 3′ to the enFeLV 5′-LTR in the feline miRNAome of all datasets evaluated (n=27). Our findings point to important biological functions of enFeLV transcription linked to solo LTRs distributed within the domestic cat genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis.Importance Endogenous retroviruses (ERVs) are increasingly implicated in host cellular processes and susceptibility to infectious agents, specifically regarding interactions with exogenous retroviral progenitors (XRVs). Exogenous feline leukemia virus (FeLV) and its endogenous counterpart (enFeLV) represent a well characterized, naturally occurring XRV-ERV dyad. We have previously documented an abrogated FeLV infection in both naturally infected cats and experimental fibroblast infections that harbor higher enFeLV proviral loads. Using an in silico approach, we provide evidence of miRNA-transcription that are produced in tissues most important for FeLV infection, replication, and transmission. Our findings point to important biological functions of enFeLV transcription linked to solo-LTRs distributed within the feline genome, with potential impacts on domestic cat exogenous FeLV susceptibility and pathogenesis. This body of work provides additional evidence of RNAi as a mechanism of viral interference and is a demonstration of ERV exaptation by the host to defend against related XRVs.