PT - JOURNAL ARTICLE AU - Guang Gao AU - Chengjia Zhu AU - Emma Liu AU - Ivan R. Nabi TI - Reticulon and CLIMP-63 control nanodomain organization of peripheral ER tubules AID - 10.1101/550715 DP - 2019 Jan 01 TA - bioRxiv PG - 550715 4099 - http://biorxiv.org/content/early/2019/02/15/550715.short 4100 - http://biorxiv.org/content/early/2019/02/15/550715.full AB - The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle composed of smooth peripheral tubules and rough, ribosome-studded central ER sheets whose morphology is determined, in part, by the ER-shaping proteins, reticulon and CLIMP-63, respectively. Here, STimulated Emission Depletion (STED) super-resolution microscopy shows that reticulon and CLIMP-63 also control the organization and dynamics of peripheral ER tubule nanodomains. STED imaging shows that lumenal ERmoxGFP, membrane Sec61βGFP, knock-in calreticulin-GFP and antibody-labeled ER resident proteins calnexin and derlin-1 are all localized to periodic puncta along the length of peripheral ER tubules that are not readily observable by diffraction limited confocal microscopy. Reticulon segregates away from and restricts lumenal blob length while CLIMP-63 associates with and increases lumenal blob length. Reticulon and CLIMP-63 also regulate the nanodomain distribution of ER resident proteins, being required for the preferential segregation of calnexin and derlin-1 puncta away from lumenal ERmoxGFP blobs. High-speed (40 ms/frame) live cell STED imaging shows that reticulon and CLIMP-63 control nanoscale compartmentalization of lumenal flow in peripheral ER tubules. Reticulon enhances and CLIMP-63 disrupts the local accumulation of lumenal ERmoxGFP at spatially defined sites along ER tubules. The ER shaping proteins reticulon and CLIMP-63 therefore control lumenal ER nanodomain dynamics, heterogeneity and interaction with ER resident proteins in peripheral ER tubules.