RT Journal Article SR Electronic T1 Single-molecule sequencing and conformational capture enable de novo mammalian reference genomes JF bioRxiv FD Cold Spring Harbor Laboratory SP 064352 DO 10.1101/064352 A1 Bickhart, Derek M. A1 Rosen, Benjamin D. A1 Koren, Sergey A1 Sayre, Brian L. A1 Hastie, Alex R. A1 Chan, Saki A1 Lee, Joyce A1 Lam, Ernest T. A1 Liachko, Ivan A1 Sullivan, Shawn T. A1 Burton, Joshua N. A1 Huson, Heather J. A1 Kelley, Christy M. A1 Hutchison, Jana L. A1 Zhou, Yang A1 Sun, Jiajie A1 Crisà, Alessandra A1 De León, F. Abel Ponce A1 Schwartz, John C. A1 Hammond, John A. A1 Waldbieser, Geoffrey C. A1 Schroeder, Steven G. A1 Liu, George E. A1 Dunham, Maitreya J. A1 Shendure, Jay A1 Sonstegard, Tad S. A1 Phillippy, Adam M. A1 Van Tassell, Curtis P. A1 Smith, Timothy P.L. YR 2016 UL http://biorxiv.org/content/early/2016/07/18/064352.abstract AB The decrease in sequencing cost and increased sophistication of assembly algorithms for short-read platforms has resulted in a sharp increase in the number of species with genome assemblies. However, these assemblies are highly fragmented, with many gaps, ambiguities, and errors, impeding downstream applications. We demonstrate current state of the art for de novo assembly using the domestic goat (Capra hircus), based on long reads for contig formation, short reads for consensus validation, and scaffolding by optical and chromatin interaction mapping. These combined technologies produced the most contiguous de novo mammalian assembly to date, with chromosome-length scaffolds and only 663 gaps. Our assembly represents a >250-fold improvement in contiguity compared to the previously published C. hircus assembly, and better resolves repetitive structures longer than 1 kb, supporting the most complete repeat family and immune gene complex representation ever produced for a ruminant species.