RT Journal Article SR Electronic T1 Artificial Neurovascular Network (ANVN) to Study the Accuracy Vs. Efficiency trade-off in an Energy Dependent Neural Network JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.02.16.431351 DO 10.1101/2021.02.16.431351 A1 Bhadra S Kumar A1 Nagavarshini Mayakkannan A1 N Sowmya Manojna A1 V. Srinivasa Chakravarthy YR 2021 UL http://biorxiv.org/content/early/2021/02/17/2021.02.16.431351.abstract AB Abstract Artificial feedforward neural networks perform a wide variety of classification and function approximation tasks with high accuracy. Unlike their artificial counterparts, biological neural networks require a supply of adequate energy delivered to single neurons by a network of cerebral microvessels. Since energy is a limited resource, a natural question is whether the cerebrovascular network is capable of ensuring maximum performance of the neural network while consuming minimum energy? Should the cerebrovascular network also be trained, along with the neural network, to achieve such an optimum?In order to answer the above questions in a simplified modeling setting, we constructed an Artificial Neurovascular Network (ANVN) comprising a multilayered perceptron (MLP) connected to a vascular tree structure. The root node of the vascular tree structure is connected to an energy source, and the terminal nodes of the vascular tree supply energy to the hidden neurons of the MLP. The energy delivered by the terminal vascular nodes to the hidden neurons determines the biases of the hidden neurons. The “weights” on the branches of the vascular tree depict the energy distribution from the parent node to the child nodes. The vascular weights are updated by a kind of “backpropagation” of the energy demand error generated by the hidden neurons.We observed that higher performance was achieved at lower energy levels when the vascular network was also trained along with the neural network. This indicates that the vascular network needs to be trained to ensure efficient neural performance. We observed that below a certain network size, the energetic dynamics of the network in the per capita energy consumption vs. classification accuracy space approaches a fixed-point attractor for various initial conditions. Once the number of hidden neurons increases beyond a threshold, the fixed point appears to vanish, giving place to a line of attractors. The model also showed that when there is a limited resource, the energy consumption of neurons is strongly correlated to their individual contribution to the network’s performance.Author summary The limited availability of resources contributed to a significant role in shaping evolution. The brain is also no different. It is known to have tremendous computing power at a significantly lower cost than artificial computing systems. The artificial neural networks aim typically at minimizing output error and maximizing accuracy. A biological network like the brain has an added constraint of energy availability, which might force it to choose an optimal solution that provides the best possible accuracy while consuming minimum energy. The intricate vascular network which ensures adequate energy to the brain might be a systematically trained layout rather than a hard-wired anatomical structure. Through this work, we intend to explore how the artificial neural network would behave if it were made dependent on an energy supply network and how the training of the energy supply network would influence the performance of the neural network. Our model concluded that training of a vascular energy network is highly desirable, and when the size of the neural network is small, the energy consumed by each neuron is a direct readout on its contribution to the network performance.Competing Interest StatementThe authors have declared no competing interest.