TY - JOUR T1 - Human cortical dynamics during full-body heading changes JF - bioRxiv DO - 10.1101/417972 SP - 417972 AU - Klaus Gramann AU - Friederike U. Hohlefeld AU - Lukas Gehrke AU - Marius Klug Y1 - 2021/01/01 UR - http://biorxiv.org/content/early/2021/03/03/417972.abstract N2 - The retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading direction and translating between distinct spatial reference frames based on multi-sensory information. While invasive studies allow investigating heading computation in moving animals, established non-invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging approach synchronizing electroencephalography with motion capture and virtual reality. Data from physically rotating participants were contrasted with rotations based only on visual flow. During physical rotation, varying rotation velocities were accompanied by pronounced wide frequency band synchronization in RSC, the parietal and occipital cortices. In contrast, the visual flow rotation condition was associated with pronounced alpha band desynchronization, replicating previous findings in desktop navigation studies, and notably absent during physical rotation. These results suggest an involvement of the human RSC in heading computation based on visual, vestibular, and proprioceptive input and implicate revisiting traditional findings of alpha desynchronization in areas of the navigation network during spatial orientation in movement-restricted participants.Competing Interest StatementThe authors have declared no competing interest. ER -