RT Journal Article SR Electronic T1 Diffusion barriers and adaptive carbon uptake strategies enhance the modeled performance of the algal CO2-concentrating mechanism JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.03.04.433933 DO 10.1101/2021.03.04.433933 A1 Chenyi Fei A1 Alexandra T. Wilson A1 Niall M. Mangan A1 Ned S. Wingreen A1 Martin C. Jonikas YR 2021 UL http://biorxiv.org/content/early/2021/03/04/2021.03.04.433933.abstract AB Many photosynthetic organisms enhance the performance of their CO2-fixing enzyme Rubisco by operating a CO2-concentrating mechanism (CCM). Most CCMs in eukaryotic algae supply concentrated CO2 to Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer an algal CCM into crops that lack a CCM to increase yields. To advance our basic understanding of the algal CCM, we develop a chloroplast-scale reaction-diffusion model to analyze the efficacy and the energy efficiency of the CCM in the green alga Chlamydomonas reinhardtii. We show that achieving an effective and energetically efficient CCM requires a physical barrier such as thylakoid stacks or a starch sheath to reduce CO2 leakage out of the pyrenoid matrix. Our model provides insights into the relative performance of two distinct inorganic carbon uptake strategies: at air-level CO2, a CCM can operate effectively by taking up passively diffusing external CO2 and catalyzing its conversion to HCO3−, which is then trapped in the chloroplast; however, at lower external CO2 levels, effective CO2 concentration requires active import of HCO3−. We also find that proper localization of carbonic anhydrases can reduce futile carbon cycling between CO2 and HCO3−, thus enhancing CCM performance. We propose a four-step engineering path that increases predicted CO2 saturation of Rubisco up to seven-fold at a theoretical cost of only 1.5 ATP per CO2 fixed. Our system-level analysis establishes biophysical principles underlying the CCM that are broadly applicable to other algae and provides a framework to guide efforts to engineer an algal CCM into land plants.Significance Statement Eukaryotic algae mediate approximately one-third of CO2 fixation in the global carbon cycle. Many algae enhance their CO2-fixing ability by operating a CO2-concentrating mechanism (CCM). Our model of the algal CCM lays a solid biophysical groundwork for understanding its operation. The model’s consistency with experimental observations supports existing hypotheses about the operating principles of the algal CCM and the functions of its component proteins. We provide a quantitative estimate of the CCM’s energy efficiency and compare the performance of two distinct CO2 assimilation strategies under varied conditions. The model offers a quantitative framework to guide the engineering of an algal CCM into land plants and supports the feasibility of this endeavor.Competing Interest StatementThe authors have declared no competing interest.