RT Journal Article SR Electronic T1 Rho and F-actin self-organize within an artificial cell cortex JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.04.09.438460 DO 10.1101/2021.04.09.438460 A1 Jennifer Landino A1 Marcin Leda A1 Ani Michaud A1 Zachary T. Swider A1 Mariah Prom A1 Christine M. Field A1 William M. Bement A1 Anthony G. Vecchiarelli A1 Andrew B. Goryachev A1 Ann L. Miller YR 2021 UL http://biorxiv.org/content/early/2021/04/10/2021.04.09.438460.abstract AB The cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division1,2. During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed “cortical excitability”3–7. In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho8,9. These feedback loops are proposed to serve as a mechanism for amplification of active Rho signaling at the cell equator to support furrowing during cytokinesis, while also maintaining flexibility for rapid error correction in response to movement of the mitotic spindle during chromosome segregation10. In this paper, we develop an artificial cortex based on Xenopus egg extract and supported lipid bilayers (SLBs), to investigate cortical Rho and F-actin dynamics11. This reconstituted system spontaneously develops two distinct dynamic patterns: singular excitable Rho and F-actin waves and non-traveling oscillatory Rho and F-actin patches. Both types of dynamic patterns have properties and dependencies similar to the cortical excitability previously characterized in vivo9. These findings directly support the longstanding speculation that the cell cortex is a self-organizing structure and present a novel approach for investigating mechanisms of Rho-GTPase-mediated cortical dynamics.HighlightsAn artificial cell cortex comprising Xenopus egg extract on a supported lipid bilayer self-organizes into complex, dynamic patterns of active Rho and F-actinWe identified two types of reconstituted cortical dynamics – excitable waves and coherent oscillationsReconstituted waves and oscillations require Rho activity and F-actin polymerizationCompeting Interest StatementThe authors have declared no competing interest.(F-actin)Filamentous actin(SLB)supported lipid bilayer(rGBD)Rho binding domain of Rhotekin(UtrCH)Utrophin calponin homology domain(TIRF)Total Internal Reflection Fluorescence(PI(4,5)P2)Phosphatidylinositol 4,5-bisphosphate(GAP)GTPase activating protein(GTP)Guanosine triphosphate