PT - JOURNAL ARTICLE AU - Talita B. Gagliardi AU - Monty E. Goldstein AU - Daniel Song AU - Kelsey M. Gray AU - Jae W. Jung AU - Kimberly M. Stroka AU - Gregg A. Duncan AU - Margaret A. Scull TI - Rhinovirus C replication is associated with the endoplasmic reticulum and triggers cytopathic effects in an <em>in vitro</em> model of human airway epithelium AID - 10.1101/2021.04.16.440244 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.04.16.440244 4099 - http://biorxiv.org/content/early/2021/04/17/2021.04.16.440244.short 4100 - http://biorxiv.org/content/early/2021/04/17/2021.04.16.440244.full AB - The clinical impact of rhinovirus C (RV-C) is well-documented; yet the viral life cycle remains poorly defined. Thus, we characterized RV-C15 replication at the single-cell level and its impact on the human airway epithelium (HAE) using a physiologically-relevant in vitro model. RV-C15 replication was restricted to ciliated cells where viral RNA levels peaked at 12 hours post-infection (hpi), correlating with elevated titers in the apical compartment at 24 hpi. Notably, infection was associated with a loss of polarized expression of the RV-C receptor, cadherin-related family member 3. Visualization of double-stranded RNA (dsRNA) during RV-C15 replication revealed two distinct replication complex arrangements within the cell, likely corresponding to different time points in infection and correlating with the formation of large intracellular vesicles. To further define RV-C15 replication sites, we analyzed the expression of giantin, phosphatidylinositol-4- phosphate, and calnexin, as well as the colocalization of these markers with dsRNA. Fluorescence levels of all three cellular markers were elevated during infection and altered giantin distribution further indicated Golgi fragmentation. However, unlike previously characterized RVs, the high ratio of calnexin-dsRNA colocalization implicated the endoplasmic reticulum as the primary site for RV-C15 replication in HAE. RV-C15 infection was also associated with elevated stimulator of interferon genes (STING) expression, facilitating replication, and the induction of incomplete autophagy, a mechanism used by other RVs to promote non-lytic release of progeny virions. Finally, RV-C15 infection resulted in a temporary loss in epithelial barrier integrity and the translocation of tight junction proteins while a reduction in mucociliary clearance indicated cytopathic effects on epithelial function. Together, our findings identify both shared and unique features of RV-C replication compared to related rhinoviruses and define the impact of RV-C on both epithelial cell organization and tissue functionality – aspects of infection that may contribute to pathogenesis in vivo.Author summary Rhinovirus C has a global distribution and significant clinical impact – especially in those with underlying lung disease. Although RV-C is genetically, structurally, and biologically distinct from RV-A and -B viruses, our understanding of the RV-C life cycle has been largely inferred from these and other related viruses. Here, we performed a detailed analysis of RV-C15 replication in a physiologically-relevant model of human airway epithelium. Our single-cell, microscopy-based approach revealed that – unlike other RVs – the endoplasmic reticulum is the primary site for RV- C15 replication. RV-C15 replication also stimulated STING expression, which was proviral, and triggered dramatic changes in cellular organization, including altered virus receptor distribution, fragmented Golgi stacks, and the induction of incomplete autophagy. Additionally, we observed a loss of epithelial barrier function and a decrease in mucociliary clearance, a major defense mechanism in the lung, during RV-C15 infection. Together, these data reveal novel insight into RV-C15 replication dynamics and resulting cytopathic effects in the primary target cells for infection, thereby furthering our understanding of the pathogenesis of RV-C. Our work highlights similar, as well as unique, aspects of RV-C15 replication compared to related pathogens, which will help guide future studies on the molecular mechanisms of RV-C infection.Competing Interest StatementThe authors have declared no competing interest.