RT Journal Article SR Electronic T1 Tissue and regional expression patterns of dicistronic tRNA-mRNA transcripts in grapevine (Vitis vinifera) and their evolutionary co-appearance with vasculature in land plants JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.04.13.039131 DO 10.1101/2020.04.13.039131 A1 Pastor Jullian Fabres A1 Lakshay Anand A1 Na Sai A1 Stephen Pederson A1 Fei Zheng A1 Alexander A. Stewart A1 Benjamin Clements A1 Edwin R Lampugnani A1 James Breen A1 Matthew Gilliham A1 Penny Tricker A1 Carlos M. Rodríguez López A1 Rakesh David YR 2021 UL http://biorxiv.org/content/early/2021/04/24/2020.04.13.039131.abstract AB Transfer RNAs (tRNA) are crucial adaptor molecules between messenger RNA (mRNA) and amino acids. Recent evidence in plants suggests that dicistronic tRNA-like structures also act as mobile signals for mRNA transcripts to move between distant tissues. Co-transcription is not a common feature in the plant nuclear genome and, in the few cases where polycistronic transcripts have been found, they include non-coding RNA species such as small nucleolar RNAs and microRNAs. It is not known, however, the extent to which dicistronic transcripts of tRNA and mRNAs are expressed in field-grown plants, or the factors contributing to their expression. We analysed tRNA-mRNA dicistronic transcripts in the major horticultural crop grapevine (Vitis vinifera) using a novel pipeline developed to identify dicistronic transcripts from high-throughput RNA sequencing data. We identified dicistronic tRNA-mRNA in leaf and berry samples from 22 commercial vineyards. Of the 124 tRNA genes that were expressed in both tissues, 18 tRNA were expressed forming part of 19 dicistronic tRNA-mRNAs. The presence and abundance of dicistronic molecules was tissue and geographic sub-region specific. In leaves, the expression patterns of dicistronic tRNA-mRNAs significantly correlated with tRNA expression, suggesting that their transcriptional regulation might be linked. We also found evidence of syntenic genomic arrangements of tRNAs and protein coding genes between grapevine and Arabidopsis thaliana, and widespread prevalence of dicistronic tRNA-mRNA transcripts among vascular land plants but no evidence of these transcripts in nonvascular lineages. This suggests that the appearance of plant vasculature and tRNA-mRNA occurred concurrently during the evolution of land plants.Competing Interest StatementThe authors have declared no competing interest.