PT - JOURNAL ARTICLE AU - Jonathan G. Hedley AU - Vladimir B. Teif AU - Alexei A. Kornyshev TI - Nucleosome induced homology recognition in chromatin AID - 10.1101/2021.04.29.441844 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.04.29.441844 4099 - http://biorxiv.org/content/early/2021/04/30/2021.04.29.441844.short 4100 - http://biorxiv.org/content/early/2021/04/30/2021.04.29.441844.full AB - One of the least understood properties of chromatin is the ability of its similar regions to recognise each other through weak interactions. Theories based on electrostatic interactions between helical macromolecules suggest that the ability to recognize sequence homology is an innate property of the non-ideal helical structure of DNA. However, this theory does not account for nucleosomal packing of DNA. Can homologous DNA sequences recognize each other while wrapped up in the nucleosomes? Can structural homology arise at the level of nucleosome arrays? Here we present a theoretical investigation of the recognition-potential-well between chromatin fibers sliding against each other. This well is different to the one predicted and observed for bare DNA; the minima in energy do not correspond to literal juxtaposition, but are shifted by approximately half the nucleosome repeat length. The presence of this potential-well suggests that nucleosome positioning may induce mutual sequence recognition between chromatin fibers and facilitate formation of chromatin nanodomains. This has implications for nucleosome arrays enclosed between CTCF-cohesin boundaries, which may form stiffer stem-like structures instead of flexible entropically favourable loops. We also consider switches between chromatin states, e.g., through acetylation/deacetylation of histones, and discuss nucleosome-induced recognition as a precursory stage of genetic recombination.Competing Interest StatementThe authors have declared no competing interest.