PT - JOURNAL ARTICLE AU - LaFreda J. Howard AU - Marie C. Reichert AU - Timothy A. Evans TI - The Slit-binding Ig1 domain is required for multiple axon guidance activities of <em>Drosophila</em> Robo2 AID - 10.1101/2021.05.07.443153 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.05.07.443153 4099 - http://biorxiv.org/content/early/2021/05/07/2021.05.07.443153.short 4100 - http://biorxiv.org/content/early/2021/05/07/2021.05.07.443153.full AB - Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. The canonical role of Robo receptors is to signal midline repulsion in response to their cognate Slit ligands, which bind to the N-terminal Ig1 domain in most Robo family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 cooperate to signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. Although it is clear that Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2’s other activities are also Slit-dependent. To determine which of Robo2’s axon guidance roles depend on its Slit-binding Ig1 domain, we have used a CRISPR/Cas9-based strategy replace the endogenous robo2 gene with a robo2 variant from which the Ig1 domain has been deleted (robo2ΔIg1). We compare the expression and localization of Robo2ΔIg1 protein with that of full-length Robo2 in embryonic neurons in vivo, and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that removal of the Ig1 domain from Robo2ΔIg1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2ΔIg1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.Competing Interest StatementThe authors have declared no competing interest.