RT Journal Article SR Electronic T1 High-throughput screening and selection of PCB-bioelectrocholeaching, electrogenic microbial communities using single chamber microbial fuel cells based on 96-well plate array JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.06.09.447729 DO 10.1101/2021.06.09.447729 A1 L. Szydlowski A1 J. Ehlich A1 N. Shibata A1 I. Goryanin YR 2021 UL http://biorxiv.org/content/early/2021/06/10/2021.06.09.447729.abstract AB We demonstrate a single chamber, 96-well plate based Microbial Fuel Cell (MFC). This invention is aimed at robust selection of electrogenic microbial community under specific conditions, (pH, external resistance, inoculum) that can be altered within the 96 well plate array. Using this device, we selected and multiplicated electrogenic microbial communities fed with acetate and lactate that can operate under different pH and produce current densities up to 19.4 A/m3 (0.6 A/m2) within 5 days past inoculation. Moreover, studies shown that Cu mobilization through PCB bioleaching occurred, thus each community was able to withstand presence of Cu2+ ions up to 600 mg/L. Metagenome analysis reveals high abundance of Dietzia spp., previously characterized in MFCs, but not reported to grow at pH 4, as well as novel species, closely related to Actinotalea ferrariae, not yet associated with electrogenicity. Microscopic observations (combined SEM and EDS) reveal that some of the species present in the anodic biofilm were adsorbing copper on their surface, probably due to the presence of metalloprotein complexes on their outer membranes. Taxonomy analysis indicated that similar consortia populate anodes, cathodes and OCP controls, although total abundances of aforementioned species are different among those groups. Annotated metagenomes showed high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes. Comparison between annotated and binned metagenomes from pH 4 and 7 anodes, as well as their OCP controls revealed unique genes present in all of them, with majority of unique genes present in pH 7 anode, where novel Actinotalea spp. was present.Competing Interest StatementThe authors have declared no competing interest.