RT Journal Article SR Electronic T1 mGluR5 Negative Modulators for Fragile X: Resistance and Persistence JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.07.02.450894 DO 10.1101/2021.07.02.450894 A1 David C Stoppel A1 Patrick K McCamphill A1 Rebecca K Senter A1 Arnold J Heynen A1 Mark F Bear YR 2021 UL http://biorxiv.org/content/early/2021/07/03/2021.07.02.450894.abstract AB Fragile X syndrome (FXS) is caused by silencing of the human FMR1 gene and is the leading monogenic cause of intellectual disability and autism. Abundant preclinical data indicated that negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGluR5) might be efficacious in treating FXS in humans. Initial attempts to translate these findings in clinical trials have failed, but these failures provide the opportunity for new discoveries that will improve future trials. The emergence of acquired treatment resistance (“tolerance”) after chronic administration of mGluR5 NAMs is a potential factor in the lack of success. Here we confirm that FXS model mice display acquired treatment resistance after chronic treatment with the mGluR5 NAM CTEP in three assays commonly examined in the mouse model of FXS: (1) audiogenic seizure susceptibility, (2) sensory cortex hyperexcitability, and (3) hippocampal protein synthesis. Cross-tolerance experiments suggest that the mechanism of treatment resistance likely occurs at signaling nodes downstream of glycogen synthase kinase 3α (GSK3α), but upstream of protein synthesis. The rapid emergence of tolerance to CTEP begs the question of how previous studies showed an improvement in inhibitory avoidance (IA) cognitive performance after chronic treatment. We show here that this observation was likely explained by timely inhibition of mGluR5 during a critical period, as brief CTEP treatment in juvenile mice is sufficient to provide a persistent improvement of IA behavior measured many weeks later. These data will be important to consider when designing future fragile X clinical trials using compounds that target the mGluR5-to-protein synthesis signaling cascade.Competing Interest StatementMark Bear is a founder of Allos Pharma, developing treatments for fragile X