PT - JOURNAL ARTICLE AU - Cassandra M. Stawicki AU - Torri E. Rinker AU - Markus Burns AU - Sonal S. Tonapi AU - Rachel P. Galimidi AU - Deepthi Anumala AU - Julia K. Robinson AU - Joshua S. Klein AU - Parag Mallick TI - Modular Fluorescent Nanoparticle DNA Probes for Detection of Peptides and Proteins AID - 10.1101/2021.07.30.454524 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.07.30.454524 4099 - http://biorxiv.org/content/early/2021/07/31/2021.07.30.454524.short 4100 - http://biorxiv.org/content/early/2021/07/31/2021.07.30.454524.full AB - Fluorescently labeled antibody and aptamer probes are used in biological studies to characterize binding interactions, measure concentrations of analytes, and sort cells. Fluorescent nanoparticle labels offer an excellent alternative to standard fluorescent labeling strategies due to their enhanced brightness, stability and multivalency; however, challenges in functionalization and characterization have impeded their use. This work introduces a straightforward approach for preparation of fluorescent nanoparticle probes using commercially available reagents and common laboratory equipment. Fluorescent polystyrene nanoparticles, Thermo Fisher FluoSpheres™, were used in proof-of-principle studies. Particle passivation was achieved by covalent attachment of amine-PEG-azide to carboxylated particles, neutralizing the surface charge from -47 to -17 mV. A conjugation-annealing handle and DNA aptamer probe was attached to the azide-PEG nanoparticle surface either through reaction of pre-annealed handle and probe or through a stepwise reaction of the nanoparticles with the handle followed by aptamer annealing. Nanoparticles functionalized with DNA aptamers targeting histidine tags and VEGF protein had high affinity (EC50s ranging from 2-7 nM) and specificity, and were more stable than conventional labels. This protocol for preparation of nanoparticle probes relies solely on commercially available reagents and common equipment, breaking down the barriers to use of nanoparticles in biological experiments.Competing Interest StatementThe authors have declared no competing interest.