RT Journal Article SR Electronic T1 TmDOTP : An NMR- based Thermometer for Magic Angle Spinning NMR Experiments JF bioRxiv FD Cold Spring Harbor Laboratory SP 566729 DO 10.1101/566729 A1 Dongyu Zhang A1 Boris Itin A1 Ann E. McDermott YR 2019 UL http://biorxiv.org/content/early/2019/03/04/566729.abstract AB Solid state NMR is a powerful tool to probe membrane protein structure and motions in native lipid structures. Sample heating, caused by magic angle spinning and radio frequency irradiation in solid state NMR, produces uncertainties in sample temperature and thermal broadening caused by temperature distributions, which can also lead to sample deterioration. To measure the sample temperature in real time, and to quantify thermal gradients and their dependence on radio frequency irradiation or spinning frequency, we use the chemical shift thermometer TmDOTP, a lanthanide complex. Compared to other NMR thermometers (e.g., the proton NMR signal of water), the proton spectrum of TmDOTP exhibits higher thermal sensitivity and resolution. In addition, the H6 proton in TmDOTP has a large chemical shift (−175 ppm at 275 K) and is well resolved from the rest of the proton spectrum. We identified two populations of TmDOTP, with differing temperatures and dependency on the radio frequency irradiation power, within proteoliposome samples. We interpret these populations as arising from the supernatant and the pellet, which is sedimented from the sample spinning. Our results indicate that TmDOTP is an excellent internal standard for monitoring temperatures of biophysically relevant samples without distorting their properties.