PT - JOURNAL ARTICLE AU - Dominik Deffner AU - Anne Kandler AU - Laurel Fogarty TI - Effective population size for culturally evolving traits AID - 10.1101/2021.09.09.459561 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.09.09.459561 4099 - http://biorxiv.org/content/early/2021/09/10/2021.09.09.459561.short 4100 - http://biorxiv.org/content/early/2021/09/10/2021.09.09.459561.full AB - Population size has long been considered an important driver of cultural diversity and complexity. Results from population genetics, however, demonstrate that in populations with complex demographic structure or mode of inheritance, it is not the census population size, N, but the effective size of a population, Ne, that determines important evolutionary parameters. Here, we examine the concept of effective population size for traits that evolve culturally, through processes of innovation and social learning. We use mathematical and computational modeling approaches to investigate how cultural Ne and levels of diversity depend on (1) the way traits are learned, (2) population connectedness, and (3) social network structure. We show that one-to-many and frequency-dependent transmission can temporally or permanently lower effective population size compared to census numbers. We caution that migration and cultural exchange can have counter-intuitive effects on Ne. Network density in random networks leaves Ne unchanged, scale-free networks tend to decrease and small-world networks tend to increase Ne compared to census numbers. For one-to-many transmission and different network structures, effective size and cultural diversity are closely associated. For connectedness, however, even small amounts of migration and cultural exchange result in high diversity independently of Ne. Our results highlight the importance of carefully defining effective population size for cultural systems and show that inferring Ne requires detailed knowledge about underlying cultural and demographic processes.AUTHOR SUMMARY Human populations show immense cultural diversity and researchers have regarded population size as an important driver of cultural variation and complexity. Our approach is based on cultural evolutionary theory which applies ideas about evolution to understand how cultural traits change over time. We employ insights from population genetics about the “effective” size of a population (i.e. the size that matters for important evolutionary outcomes) to understand how and when larger populations can be expected to be more culturally diverse. Specifically, we provide a formal derivation for cultural effective population size and use mathematical and computational models to study how effective size and cultural diversity depend on (1) the way culture is transmitted, (2) levels of migration and cultural exchange, as well as (3) social network structure. Our results highlight the importance of effective sizes for cultural evolution and provide heuristics for empirical researchers to decide when census numbers could be used as proxies for the theoretically relevant effective numbers and when they should not.Competing Interest StatementThe authors have declared no competing interest.