PT - JOURNAL ARTICLE AU - Julio E. Molineros AU - Bhupinder Singh AU - Chikashi Terao AU - Yukinori Okada AU - Jakub Kaplan AU - Barbara McDaniel AU - Shuji Akizuki AU - Celi Sun AU - Carol Webb AU - Loren L. Looger AU - Swapan K. Nath TI - Mechanistic characterization of <em>RASGRP1</em> variants identifies an hnRNP K-regulated transcriptional enhancer contributing to SLE susceptibility AID - 10.1101/568790 DP - 2019 Jan 01 TA - bioRxiv PG - 568790 4099 - http://biorxiv.org/content/early/2019/03/06/568790.short 4100 - http://biorxiv.org/content/early/2019/03/06/568790.full AB - Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic component. We recently identified a novel SLE susceptibility locus near RASGRP1, which governs the ERK/MAPK kinase cascade and B-/T-cell differentiation and development. However, precise causal RASGRP1 functional variant(s) and their mechanisms of action in SLE pathogenesis remain undefined. Our goal was to fine-map this locus, prioritize genetic variants according to likely functionality, experimentally validate the contribution of three SNPs to SLE risk, and experimentally determine their biochemical mechanisms of action. We performed a meta-analysis across six Asian and European cohorts (9,529 cases; 22,462 controls), followed by in silico bioinformatic and epigenetic analyses to prioritize potentially functional SNPs. We experimentally validated the functional significance and mechanism of action of three SNPs in cultured T-cells. Meta-analysis identified 18 genome-wide significant (p&lt;5×10−8) SNPs, mostly concentrated in two haplotype blocks, one intronic and the other intergenic. Epigenetic fine-mapping, allelic, eQTL and imbalance analyses predicted three transcriptional regulatory regions with four SNPs (rs7170151, rs11631591-rs7173565, and rs9920715) prioritized for functional validation. Luciferase reporter assays indicated significant allele-specific enhancer activity for intronic rs7170151 and rs11631591-rs7173565 in T-lymphoid (Jurkat) cells, but not in HEK293 cells. Following up with EMSA, mass spectrometry and ChIP-qPCR, we detected allele-dependent interactions between heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and rs11631591. Furthermore, inhibition of hnRNP-K in Jurkat and primary T-cells downregulated RASGRP1 and ERK/MAPK signaling. Comprehensive association, bioinformatics, and epigenetic analyses yielded putative functional variants of RASGRP1, which were experimentally validated. Notably, intronic variant (rs11631591) is located in a cell type-specific enhancer sequence, where its risk allele binds to the hnRNP-K protein and modulates RASGRP1 expression in Jurkat and primary T-cells. As risk allele dosage of rs11631591 correlates with increased RASGRP1 expression and ERK activity, we suggest that this SNP may underlie SLE risk at this locus.