RT Journal Article SR Electronic T1 Lexical frequency and sentence context influence the brain’s response to single words JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.12.08.416016 DO 10.1101/2020.12.08.416016 A1 Eleanor Huizeling A1 Sophie Arana A1 Peter Hagoort A1 Jan Mathijs Schoffelen YR 2021 UL http://biorxiv.org/content/early/2021/10/11/2020.12.08.416016.abstract AB Typical adults read remarkably quickly. Such fast reading is facilitated by brain processes that are sensitive to both word frequency and contextual constraints. It is debated as to whether these attributes have additive or interactive effects on language processing in the brain. We investigated this issue by analysing existing magnetoencephalography data from 99 participants reading intact and scrambled sentences. Using a cross-validated model comparison scheme, we found that lexical frequency predicted the word-by-word elicited MEG signal in a widespread cortical network, irrespective of sentential context. In contrast, index (ordinal word position) was more strongly encoded in sentence words, in left front-temporal areas. This confirms that frequency influences word processing independently of predictability, and that contextual constraints affect word-by-word brain responses. With a conservative multiple comparisons correction, only the interaction between lexical frequency and surprisal survived, in anterior temporal and frontal cortex, and not between lexical frequency and entropy, nor between lexical frequency and index. However, interestingly, the uncorrected index*frequency interaction revealed an effect in left frontal and temporal cortex that reversed in time and space for intact compared to scrambled sentences. Finally, we provide evidence to suggest that, in sentences, lexical frequency and predictability may independently influence early (<150ms) and late stages of word processing, but also interact during late stages of word processing (>150-250ms), thus helping to converge previous contradictory eye-tracking and electrophysiological literature. Current neuro-cognitive models of reading would benefit from accounting for these differing effects of lexical frequency and predictability on different stages of word processing.Competing Interest StatementThe authors have declared no competing interest.