RT Journal Article SR Electronic T1 Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.11.03.467107 DO 10.1101/2021.11.03.467107 A1 Okuda, Kendi A1 Costa Franco, Miriam Maria Silva A1 Yasunaga, Ari A1 Gazzinelli, Ricardo A1 Rabinovitch, Michel A1 Cherry, Sara A1 Silverman, Neal YR 2021 UL http://biorxiv.org/content/early/2021/11/04/2021.11.03.467107.abstract AB Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn effects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.Competing Interest StatementThe authors have declared no competing interest.