RT Journal Article SR Electronic T1 ICOR: Improving codon optimization with recurrent neural networks JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.11.08.467706 DO 10.1101/2021.11.08.467706 A1 Rishab Jain A1 Aditya Jain A1 Elizabeth Mauro A1 Kevin LeShane A1 Douglas Densmore YR 2021 UL http://biorxiv.org/content/early/2021/11/24/2021.11.08.467706.abstract AB In protein sequences—as there are 61 sense codons but only 20 standard amino acids—most amino acids are encoded by more than one codon. Although such synonymous codons do not alter the encoded amino acid sequence, their selection can dramatically affect the expression of the resulting protein. Codon optimization of synthetic DNA sequences is important for heterologous expression. However, existing solutions are primarily based on choosing high-frequency codons only, neglecting the important effects of rare codons. In this paper, we propose a novel recurrent-neural-network based codon optimization tool, ICOR, that aims to learn codon usage bias on a genomic dataset of Escherichia coli. We compile a dataset of over 7,000 non-redundant, high-expression, robust genes which are used for deep learning. The model uses a bidirectional long short-term memory-based architecture, allowing for the sequential context of codon usage in genes to be learned. Our tool can predict synonymous codons for synthetic genes toward optimal expression in Escherichia coli. We demonstrate that sequential context achieved via RNN may yield codon selection that is more similar to the host genome, therefore improving protein expression more than frequency-based approaches. ICOR is evaluated on 1,481 Escherichia coli genes as well as a benchmark set of 40 select DNA sequences whose heterologous expression has been previously characterized. ICOR’s performance across five metrics is compared to that of five different codon optimization techniques. The codon adaptation index -- a metric indicative of high real-world expression -- was utilized as the primary benchmark in this study. ICOR is shown to improve the codon adaptation index by 41.69% and 17.25% compared to the original and Genscript’s GenSmart-optimized sequences, respectively. Our tool is provided as an open-source software package that includes the benchmark set of sequences used in this study.Competing Interest StatementThe authors have declared no competing interest.