%0 Journal Article %A Varun Sreenivasan %A Eleni Serafeimidou-Pouliou %A David Exposito-Alonso %A Kinga Bercsenyi %A Clémence Bernard %A Sung-Eun Bae %A Fazal Oozeer %A Alicia Hanusz-Godoy %A Robert Edwards %A Oscar Marín %T Input-specific control of interneuron numbers in nascent striatal networks %D 2021 %R 10.1101/2021.12.01.470575 %J bioRxiv %P 2021.12.01.470575 %X The assembly of functional neuronal circuits requires appropriate numbers of distinct classes of neurons, but the mechanisms through which their relative proportions are established remain poorly defined. Investigating the mouse striatum, here we found that the two most prominent subtypes of striatal interneurons, parvalbumin-expressing (PV+) GABAergic and cholinergic (ChAT+) interneurons, undergo extensive programmed cell death between the first and second postnatal weeks. Remarkably, the survival of PV+ and ChAT+ interneurons is regulated by distinct mechanisms mediated by their specific afferent connectivity. While long-range cortical inputs control PV+ interneuron survival, ChAT+ interneuron survival is regulated by local input from the medium spiny neurons. Our results identify input-specific circuit mechanisms that operate during the period of programmed cell death to establish the final number of interneurons in nascent striatal networks.Competing Interest StatementThe authors have declared no competing interest. %U https://www.biorxiv.org/content/biorxiv/early/2021/12/02/2021.12.01.470575.full.pdf