PT - JOURNAL ARTICLE AU - Maria Patron AU - Daryna Tarasenko AU - Hendrik Nolte AU - Mausumi Ghosh AU - Yohsuke Ohba AU - Yvonne Lasarzewski AU - Zeinab Alsadat Ahmadi AU - Alfredo Cabrera-Orefice AU - Akinori Eyiama AU - Tim Kellermann AU - Elena I. Rugarli AU - Ulrich Brandt AU - Michael Meinecke AU - Thomas Langer TI - Regulation of mitochondrial proteostasis by the proton gradient AID - 10.1101/2021.12.12.470907 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.12.12.470907 4099 - http://biorxiv.org/content/early/2021/12/12/2021.12.12.470907.short 4100 - http://biorxiv.org/content/early/2021/12/12/2021.12.12.470907.full AB - Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multi-proteomic approach to demonstrate regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.Competing Interest StatementThe authors have declared no competing interest.