TY - JOUR T1 - The orientation of a membrane probe from structural analysis by enhanced Raman scattering JF - bioRxiv DO - 10.1101/572529 SP - 572529 AU - Hannah J. Hughes AU - Steven M. E. Demers AU - Aobo Zhang AU - Jason H. Hafner Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/03/09/572529.abstract N2 - Small fluorescent molecules are widely used as probes of biomembranes. Different probes optically indicate membrane properties such as the lipid phase, thickness, viscosity, and electrical potential. The detailed molecular mechanisms behind probe signals are not well understood, in part due to the lack of tools to determine probe position and orientation in the membrane. Optical measurements on aligned biomembranes and lipid bilayers provide some degree of orientational information based on anisotropy in absorption, fluorescence, or nonlinear optical properties. These methods typically find the polar tilt angle between the membrane normal and the long axis of the molecule. Here we show that solution-phase surface enhanced Raman scattering (SERS) spectra of lipid membranes on gold nanorods can be used to determine molecular orientation of molecules within the membrane. The voltage sensitive dye 4-(2-(6-(dibutylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-hydroxide, known as di-4-ANEPPS, is studied. Through the analysis of several peaks in the SERS spectrum, the polar angle from the membrane normal is found to be 63°, and the roll angle around the long axis of the molecule to be 305° from the original orientation. This structural analysis method could help elucidate the meaning of fluorescent membrane probe signals, and how they are affected by different lipid compositions. ER -