PT - JOURNAL ARTICLE AU - Christopher M. Wintersinger AU - Dionis Minev AU - Anastasia Ershova AU - Hiroshi M. Sasaki AU - Gokul Gowri AU - Jonathan F. Berengut AU - F. Eduardo Corea-Dilbert AU - Peng Yin AU - William M. Shih TI - Multi-micron crisscross structures from combinatorially assembled DNA-origami slats AID - 10.1101/2022.01.06.475243 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.01.06.475243 4099 - http://biorxiv.org/content/early/2022/01/07/2022.01.06.475243.short 4100 - http://biorxiv.org/content/early/2022/01/07/2022.01.06.475243.full AB - Living systems achieve robust self-assembly across length scales. Meanwhile, nanofabrication strategies such as DNA origami have enabled robust self-assembly of submicron-scale shapes.However, erroneous and missing linkages restrict the number of unique origami that can be practically combined into a single supershape. We introduce crisscross polymerization of DNA-origami slats for strictly seed-dependent growth of custom multi-micron shapes with user-defined nanoscale surface patterning. Using a library of ~2000 strands that can be combinatorially assembled to yield any of ~1e48 distinct DNA origami slats, we realize five-gigadalton structures composed of >1000 uniquely addressable slats, and periodic structures incorporating >10,000 slats. Thus crisscross growth provides a generalizable route for prototyping and scalable production of devices integrating thousands of unique components that each are sophisticated and molecularly precise.One-sentence summary Crisscross polymerization of DNA-origami slats can yield micron-scale structures with uniquely addressable nanoscale features.Competing Interest StatementA patent (PCT/US2017/045013) has been filed based on this work.