RT Journal Article SR Electronic T1 High-speed multifocal plane fluorescence microscopy for three-dimensional visualisation of beating flagella JF bioRxiv FD Cold Spring Harbor Laboratory SP 573485 DO 10.1101/573485 A1 Richard J. Wheeler YR 2019 UL http://biorxiv.org/content/early/2019/03/11/573485.abstract AB Analysis of flagellum beating in three dimensions is important for understanding how cells can undergo complex flagellum-driven motility and the ability to use fluorescence microscopy for such three-dimensional analysis would be extremely powerful. Trypanosoma and Leishmania are unicellular parasites which undergo complex cell movements in three dimensions as they swim and would particularly benefit from such an analysis. Here, high-speed multifocal plane fluorescence microscopy, a technique in which a light path multi-splitter is used to visualise 4 focal planes simultaneously, was used to reconstruct the flagellum beating of Trypanosoma brucei and Leishmania mexicana in three dimensions. It was possible to use either an organic fluorescent stain or a genetically-encoded fluorescence fusion protein to visualise flagellum and cell movement in three dimensions at a 200 Hz frame rate. This high-speed multifocal plane fluorescence microscopy approach was used to address two open questions regarding Trypanosoma and Leishmania swimming: To quantify the planarity of the L. mexicana flagellum beat and analyse the nature of flagellum beating during T. brucei ‘tumbling’.