RT Journal Article SR Electronic T1 Zebrafish caudal fin amputation induces a metabolic switch necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration JF bioRxiv FD Cold Spring Harbor Laboratory SP 2022.01.26.477895 DO 10.1101/2022.01.26.477895 A1 Brandão, Ana S. A1 Borbinha, Jorge A1 Pereira, Telmo A1 Brito, Patrícia H. A1 Lourenço, Raquel A1 Bensimon-Brito, Anabela A1 Jacinto, António YR 2022 UL http://biorxiv.org/content/early/2022/01/27/2022.01.26.477895.abstract AB Regeneration depends on the ability of mature cells at the injury site to respond to injury, generating tissue-specific progenitors that incorporate the blastema and proliferate to reconstitute the original organ architecture. The metabolic microenvironment has been tightly connected to cell function and identity during development and tumorigenesis. Yet, the link between metabolism and cell identity at the mechanistic level in a regenerative context remains unclear. The adult zebrafish caudal fin, and bone cells specifically, have been crucial for the understanding of mature cell contribution to tissue regeneration. Here, we use this model to explore the relevance of glucose metabolism for the cell fate transitions preceding new osteoblast formation and blastema assembly. We show that injury triggers a shift in the metabolic profile at early stages of regeneration, enhancing glycolysis at the expense of mitochondrial oxidation. This metabolic switch mediates transcriptional changes that make mature osteoblast amenable to be reprogramed into pre-osteoblasts and induces cell cycle re-entry and progression. Manipulation of the metabolic profile led to severe reduction of the pre-osteoblast pool, diminishing their capacity to generate new osteoblasts, and to a complete abrogation of blastema formation. Overall, our data indicate that metabolic alterations have a powerful instructive role in regulating genetic programs that dictate fate decisions and stimulate proliferation, thereby providing a deeper understanding on the mechanisms regulating blastema formation and bone regeneration.Competing Interest StatementThe authors have declared no competing interest.