TY - JOUR T1 - Genetic mapping of flowering time and plant height in a maize Stiff Stalk MAGIC population JF - bioRxiv DO - 10.1101/2022.01.31.478539 SP - 2022.01.31.478539 AU - Kathryn J. Michel AU - Dayane C. Lima AU - Hope Hundley AU - Vasanth Singan AU - Yuko Yoshinaga AU - Chris Daum AU - Kerrie Barry AU - Karl W. Broman AU - C. Robin Buell AU - Natalia de Leon AU - Shawn M. Kaeppler Y1 - 2022/01/01 UR - http://biorxiv.org/content/early/2022/02/02/2022.01.31.478539.abstract N2 - The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private maize breeders since its inception in the 1930’s. Flowering time and plant height are critical characteristics for both inbred parents and their test crossed hybrid progeny. To study these traits, a six parent multiparent advanced generation intercross (MAGIC) population was developed including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type). A set of 779 doubled haploid lines were evaluated for flowering time and plant height in two field replicates in 2016 and 2017, and a subset of 689 and 561 doubled haploid lines were crossed to two testers, respectively, and evaluated as hybrids in two locations in 2018 and 2019 using an incomplete block design. Markers were derived from a Practical Haplotype Graph built from the founder whole genome assemblies and genotype-by-sequencing and exome capture-based sequencing of the population. Genetic mapping utilizing an update to R/qtl2 revealed differing profiles of significant loci for both traits between 636 of the DH lines and two sets of 571 and 472 derived hybrids. Genomic prediction was used to test the feasibility of predicting hybrid phenotypes based on the per se data. Predictive abilities were highest on direct models trained using the data they would predict (0.55 to 0.63), and indirect models trained using per se data to predict hybrid traits had slightly lower predictive abilities (0.49 to 0.55). Overall, this finding is consistent with the overlapping and non-overlapping significant QTL found within the per se and hybrid populations and suggests that selections for phenology traits can be made effectively on doubled haploid lines before hybrid data is available.Core Ideas A multi-parent advanced generation intercross (MAGIC) mapping population was developed from six founder Stiff Stalk maize inbreds with commercial relevance. Genetic mapping utilizing an update to R/qtl2 was demonstrated for flowering and plant height traits.Genetic mapping using maize inbred and hybrid information was compared and provided insight into trait expression in inbreds relative to heterotic testcross hybrids.BSSSIowa Stiff Stalk SyntheticBLUEbest linear unbiased estimatorDHdoubled haploidex-PVPexpired Plant Variety ProtectionGWASgenome wide association studyMAGICmulti-parent advanced generation intercross populationPHGPractical Haplotype GraphPHIPioneer Hi-Bred, InternationalPVPPlant Variety ProtectionQTLquantitative trait locus or lociSSStiff Stalk ER -