TY - JOUR T1 - Test-retest reproducibility of human brain multi-slice 1H FID-MRSI data at 9.4 T after optimization of lipid regularization, macromolecular model and spline baseline stiffness JF - bioRxiv DO - 10.1101/2022.02.02.478678 SP - 2022.02.02.478678 AU - Theresia Ziegs AU - Andrew Martin Wright AU - Anke Henning Y1 - 2022/01/01 UR - http://biorxiv.org/content/early/2022/02/04/2022.02.02.478678.abstract N2 - Purpose This study analyzes the effects of retrospective lipid suppression, a simulated macromolecular prior knowledge and different spline baseline stiffness values on 9.4 T multi-slice proton FID-MRSI data spanning the whole cerebrum of human brain and its reproducibility of metabolite ratio (/tCr) maps for 10 brain metabolites.Methods Measurements were performed twice on five volunteers using a non-accelerated FID MRSI 2D sequence at 9.4 T. The effects of retrospective lipid L2-regularization, macromolecular spectrum and different LCModel baseline flexibilities on SNR, FWHM, fitting residual, CRLB and the concentration ratio maps were investigated. Intra-subject, inter-session coefficient of variation of the mean metabolite ratios (/tCr) of each slice was calculated.Results L2-regularization provided effective suppression of lipid-artifacts, but should be avoided if no artifacts are detected. Transversal, sagittal and coronal of many metabolite ratio maps correspond to anatomically expected concentration relations in gray and white matter for the majority of the cerebrum when using a flexible baseline in LCModel fit. Additionally, results from the second measurements of the same subjects show that slice positioning and data quality correlate significantly to the first measurement.Conclusion Concentration ratio maps (/tCr) for 4 metabolites (tCho, NAA, Glu, mI) spanning the majority and six metabolites (NAAG, GABA, GSH, Tau, Gln, Asp) covering 32 mm in the upper part of the brain were acquired at 9.4 T using multi-slice FID MRSI with retrospective lipid suppression, a macromolecular spectrum and a flexible LCModel baseline.Competing Interest StatementThe authors have declared no competing interest. ER -