RT Journal Article SR Electronic T1 Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis JF bioRxiv FD Cold Spring Harbor Laboratory SP 474700 DO 10.1101/474700 A1 Judith F. Ashouri A1 Lih-Yun Hsu A1 Steven Yu A1 Dmitry Rychkov A1 Yiling Chen A1 Debra A. Cheng A1 Marina Sirota A1 Erik Hansen A1 Lisa Lattanza A1 Julie Zikherman A1 Arthur Weiss YR 2019 UL http://biorxiv.org/content/early/2019/03/11/474700.abstract AB How pathogenic CD4 T cells in Rheumatoid Arthritis (RA) develop remains poorly understood. We used Nur77—a marker of T cell antigen receptor (TCR) signaling—to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into IL-17 producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic auto-antigen exposure in vivo. The enhanced autoreactivity was associated with upregulation of IL-6 cytokine signaling machinery, which might in part be attributable to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)—a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyper-responsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly downregulated in RA synovium. This suggests that, despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6 which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.Significance Statement How arthritis-causing T cells trigger rheumatoid arthritis (RA) is not understood since it is difficult to differentiate T cells activated by inflammation in arthritic joints from those activated through their TCR by self-antigens. We developed a model to identify and study antigen-specific T cell responses in arthritis. Nur77—a specific marker of TCR signaling—was used to identify antigen-activated CD4 T cells in the SKG arthritis model and patients with RA. Nur77 could distinguish highly arthritogenic and autoreactive T cells in SKG mice. The enhanced autoreactivity was associated with increased IL-6-receptor-signaling, likely contributing to their arthritogenicity. These data highlight a functional correlate between Nur77 expression, arthritogenic T cell populations, and heightened IL-6 sensitivity in SKG mice with translatable implications for human RA.