RT Journal Article SR Electronic T1 Selective labelling of arginine residues engaged in binding sulfatedglycosaminoglycans JF bioRxiv FD Cold Spring Harbor Laboratory SP 574947 DO 10.1101/574947 A1 Thao P. Bui A1 Yong Li A1 Joscelyn Harris A1 Quentin M. Nunes A1 Mark C. Wilkinson A1 David G. Fernig YR 2019 UL http://biorxiv.org/content/early/2019/03/12/574947.abstract AB The activities of hundreds of proteins in the extracellular space are regulated by binding to the glycosaminoglycan heparan sulfate (HS). These interactions are driven by ionic bonds between sulfate and carboxylate groups on the polysaccharide and the side chains of basic residues in the protein. Here we develop a method to selectively label the guanidino side chains of arginine residues in proteins that engage the anionic groups in the sugar. The protein is bound to heparin (a common experimental proxy for HS) on an affinity column. Arginine side chains that are exposed to solvent, and thus involved in binding, are protected by reaction with the dicarbonyl phenylgyoxal (PGO). Elution of the bound proteins then exposes arginine side chains that had directly engaged with anionic groups on the polysaccharide. These are reacted with hydroxyl-phenylglyoxal (HPG). PGO was found to generate three products: a 1:1 product, the 1:1 water condensed product and a 2:1 PGO:arginine product. These three reaction products and that of HPG had distinct masses. Scripts were written to analyse the mass spectra and so identify HPG labelled arginine residues. Proof of principle was acquired on model peptides. The method was then applied to the identification of heparin binding arginine residues in fibroblast growth factors (FGF) 1 and 2. The data demonstrate that four out of eleven arginine residues on FGF2 and five out of six arginine residues of FGF1 engage heparin. Our approach provides a rapid and reliable means to identify arginines involved in functional complexes such as those of proteins with heparin