PT - JOURNAL ARTICLE AU - Rubben Kaat AU - Tilleman Laurentijn AU - Deserranno Koen AU - Tytgat Olivier AU - Deforce Dieter AU - Filip Van Nieuwerburgh TI - Cas9 targeted nanopore sequencing with enhanced variant calling improves <em>CYP2D6</em>-<em>CYP2D7</em> hybrid allele genotyping AID - 10.1101/2022.03.31.486504 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.03.31.486504 4099 - http://biorxiv.org/content/early/2022/04/01/2022.03.31.486504.short 4100 - http://biorxiv.org/content/early/2022/04/01/2022.03.31.486504.full AB - CYP2D6 is one of the most challenging pharmacogenes to genotype due to the high similarity with its neighboring pseudogenes and the frequent occurrence of CYP2D6-CYP2D7 hybrids. Unfortunately, most current genotyping methods are therefore not able to correctly determine the complete CYP2D6-CYP2D7 sequence. Therefore, we developed a genotyping assay to generate complete allele-specific consensus sequences of complex regions by optimizing the PCR-free nanopore Cas9-targeted sequencing (nCATS) method combined with adaptive sequencing, and developing a new comprehensive long read genotyping (CoLoRGen) pipeline. The CoLoRGen pipeline first generates consensus sequences of both alleles and subsequently determines both large structural and small variants to ultimately assign the correct star-alleles. In reference samples, our genotyping assay confirms the presence of CYP2D6-CYP2D7 large structural variants, single nucleotide variants (SNVs), and small insertions and deletions (INDELs) that go undetected by most current assays. Moreover, our results provide direct evidence that the CYP2D6 genotype of the NA12878 DNA should be updated to include the CYP2D6-CYP2D7 *68 hybrid and several additional single nucleotide variants compared to existing references. Ultimately, the nCATS-CoLoRGen genotyping assay additionally allows for more accurate gene function predictions by enabling the possibility to detect and phase de novo mutations in addition to known large structural and small variants.Author Summary During the last decades, the usefulness of personalized medicine has become increasingly apparent. Directly linked to that is the need for accurate genotyping assays to determine the pharmacogenetic profile of patients. Continuing research has led to the development of genotyping assays that perform quite robustly. However, complex genes remain an issue when it comes to determining the complete sequence correctly. An example of such a complex but very important pharmacogene is CYP2D6. Therefore, we developed a genotyping assay in an attempt to generate complete allele-specific consensus sequences of CYP2D6, by optimizing a targeted amplification-free long-read sequencing method and developing a new analysis pipeline. In reference samples, we showed that our genotyping assay performed accurately and confirmed the presence of variants that go undetected by most current assays. However, the implementation of this assay in practice is still hampered as the selected enrichment strategies inherently lead to a low percentage of on-target reads, resulting in low on-target sequencing depths. Further optimization and validation of the assay is thus needed, but definitely worth considering for follow-up research as we already demonstrated the added value for generating more complete genotypes, which on its turn will result in more accurate gene function predictions.Competing Interest StatementThe authors have declared no competing interest.