RT Journal Article SR Electronic T1 Spatial reasoning via recurrent neural dynamics in mouse retrosplenial cortex JF bioRxiv FD Cold Spring Harbor Laboratory SP 2022.04.12.488024 DO 10.1101/2022.04.12.488024 A1 Jakob Voigts A1 Ingmar Kanitscheider A1 Nicholas J. Miller A1 Enrique H.S. Toloza A1 Jonathan P. Newman A1 Ila R. Fiete A1 Mark T. Harnett YR 2022 UL http://biorxiv.org/content/early/2022/04/13/2022.04.12.488024.abstract AB From visual perception to language, sensory stimuli change their meaning depending on prior experience. Recurrent neural dynamics can interpret stimuli based on externally cued context, but it is unknown whether similar dynamics can compute and employ internal hypotheses to resolve ambiguities. Here, we show that mouse retrosplenial cortex (RSC) can form hypotheses over time and perform spatial reasoning through recurrent dynamics. In our task, mice navigated using ambiguous landmarks that are identified through their mutual spatial relationship, requiring sequential refinement of hypotheses. Neurons in RSC and in artificial neural networks encoded mixtures of hypotheses, location, and sensory information, and were constrained by robust low dimensional dynamics. RSC encoded hypotheses as locations in activity space with divergent trajectories for identical sensory inputs, enabling their correct interpretation. Our results indicate that interactions between internal hypotheses and external sensory data in recurrent circuits can provide a substrate for complex sequential cognitive reasoning.Competing Interest StatementThe authors have declared no competing interest.