PT - JOURNAL ARTICLE AU - Elisabetta Iavarone AU - Jane Simko AU - Ying Shi AU - Marine Bertschy AU - María García-Amado AU - Polina Litvak AU - Anna-Kristin Kaufmann AU - Christian O’Reilly AU - Oren Amsalem AU - Marwan Abdellah AU - Grigori Chevtchenko AU - Benoît Coste AU - Jean-Denis Courcol AU - András Ecker AU - Cyrille Favreau AU - Adrien Christian Fleury AU - Werner Van Geit AU - Michael Gevaert AU - Nadir Román Guerrero AU - Joni Herttuainen AU - Genrich Ivaska AU - Samuel Kerrien AU - James G. King AU - Pramod Kumbhar AU - Patrycja Lurie AU - Ioannis Magkanaris AU - Vignayanandam Ravindernath Muddapu AU - Jayakrishnan Nair AU - Fernando L. Pereira AU - Rodrigo Perin AU - Fabien Petitjean AU - Rajnish Ranjan AU - Michael Reimann AU - Liviu Soltuzu AU - Mohameth François Sy AU - M. Anıl Tuncel AU - Alexander Ulbrich AU - Matthias Wolf AU - Francisco Clascá AU - Henry Markram AU - Sean L. Hill TI - Thalamic control of sensory enhancement and sleep spindle properties in a biophysical model of thalamoreticular microcircuitry AID - 10.1101/2022.02.28.482273 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.02.28.482273 4099 - http://biorxiv.org/content/early/2022/04/14/2022.02.28.482273.short 4100 - http://biorxiv.org/content/early/2022/04/14/2022.02.28.482273.full AB - Thalamoreticular circuitry is known to play a key role in attention, cognition and the generation of sleep spindles, and is implicated in numerous brain disorders, but the cellular and synaptic mechanisms remain intractable. Therefore, we developed the first detailed computational model of mouse thalamus and thalamic reticular nucleus microcircuitry that captures morphological and biophysical properties of ∼14,000 neurons connected via ∼6M synapses, and recreates biological synaptic and gap junction connectivity. Simulations recapitulate multiple independent network-level experimental findings across different brain states, providing a novel unifying cellular and synaptic account of spontaneous and evoked activity in both wakefulness and sleep. Furthermore, we found that: 1.) inhibitory rebound produces frequency-selective enhancement of thalamic responses during wakefulness, in addition to its role in spindle generation; 2.) thalamic interactions generate the characteristic waxing and waning of spindle oscillations; and 3.) changes in thalamic excitability (e.g. due to neuromodulation) control spindle frequency and occurrence. The model is openly available and provides a new tool to interpret spindle oscillations and test hypotheses of thalamoreticular circuit function and dysfunction across different network states in health and disease.Competing Interest StatementThe authors have declared no competing interest.