RT Journal Article
SR Electronic
T1 The Drosophila Fab-7 boundary element modulates Abd-B gene activity in the genital disc by guiding an inversion of collinear chromatin organization and alternative promoter use
JF bioRxiv
FD Cold Spring Harbor Laboratory
SP 2022.04.26.489596
DO 10.1101/2022.04.26.489596
A1 Moniot-Perron, Laura
A1 Moindrot, Benoit
A1 Manceau, Line
A1 Edouard, Joanne
A1 Jaszczyszyn, Yan
A1 Gilardi-Hebenstreit, Pascale
A1 Hernandez, Céline
A1 Bloyer, Sébastien
A1 Noordermeer, Daan
YR 2022
UL http://biorxiv.org/content/early/2022/04/26/2022.04.26.489596.abstract
AB Hox genes encode transcription factors that specify segmental identities along the Antero-Posterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, an evolutionary conserved feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive replacement of histone modifications, reorganization of 3D chromatin architecture and sequential activation of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compared chromatin organization in larvae and in cell lines, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary element for insulation between 3D domains marked by different histone modifications. Interestingly, we detected a non-canonical inversion of collinear chromatin dynamics at the Abd-B gene, with the active histone domain decreasing in size. This chromatin organization differentially instructed alternative Abd-B promoter use, thereby expanding the possibilities to regulate transcriptional output.Competing Interest StatementThe authors have declared no competing interest.