RT Journal Article SR Electronic T1 The Drosophila Fab-7 boundary element modulates Abd-B gene activity in the genital disc by guiding an inversion of collinear chromatin organization and alternative promoter use JF bioRxiv FD Cold Spring Harbor Laboratory SP 2022.04.26.489596 DO 10.1101/2022.04.26.489596 A1 Moniot-Perron, Laura A1 Moindrot, Benoit A1 Manceau, Line A1 Edouard, Joanne A1 Jaszczyszyn, Yan A1 Gilardi-Hebenstreit, Pascale A1 Hernandez, Céline A1 Bloyer, Sébastien A1 Noordermeer, Daan YR 2022 UL http://biorxiv.org/content/early/2022/04/26/2022.04.26.489596.abstract AB Hox genes encode transcription factors that specify segmental identities along the Antero-Posterior body axis. These genes are organized in clusters, where their order corresponds to their activity along the body axis, an evolutionary conserved feature known as collinearity. In Drosophila, the BX-C cluster contains the three most posterior Hox genes, where their collinear activation incorporates progressive replacement of histone modifications, reorganization of 3D chromatin architecture and sequential activation of boundary elements and cis-regulatory regions. To dissect functional hierarchies, we compared chromatin organization in larvae and in cell lines, with a focus on the Abd-B gene. Our work establishes the importance of the Fab-7 boundary element for insulation between 3D domains marked by different histone modifications. Interestingly, we detected a non-canonical inversion of collinear chromatin dynamics at the Abd-B gene, with the active histone domain decreasing in size. This chromatin organization differentially instructed alternative Abd-B promoter use, thereby expanding the possibilities to regulate transcriptional output.Competing Interest StatementThe authors have declared no competing interest.