TY - JOUR T1 - The statistical power of three monkeys JF - bioRxiv DO - 10.1101/2022.05.10.491373 SP - 2022.05.10.491373 AU - Jean Laurens Y1 - 2022/01/01 UR - http://biorxiv.org/content/early/2022/05/10/2022.05.10.491373.abstract N2 - Neuroscience studies in non-human primates (NHP) often follow the rule of thumb that results observed in one animal must be replicated in at least one other. However, we lack a statistical justification for this rule of thumb, or an analysis of whether including three or more animals is better than including two. Yet, a formal statistical framework for experiments with few subjects would be crucial for experimental design, ethical justification, and data analysis. Also, including three or four animals in a study creates the possibility that the results observed in one animal will differ from those observed in the others: we need a statistically justified rule to resolve such situations. Here, I present a statistical framework to address these issues. This framework assumes that conducting an experiment will produce a similar result for a large proportion of the population (termed ‘representative’), but will produce spurious results for a substantial proportion of animals (termed ‘outliers’); the fractions of ‘representative’ and ‘outliers’ animals being defined by a prior distribution. I propose a procedure in which experimenters collect results from M animals and accept results that are observed in at least N of them (‘N-out-of-M’ procedure). I show how to compute the risks α (of reaching an incorrect conclusion) and β (of failing to reach a conclusion) for any prior distribution, and as a function of N and M. Strikingly, I find that the N-out-of-M model leads to a similar conclusion across a wide range of prior distributions: recordings from two animals lowers the risk α and therefore ensures reliable result, but leaves a large risk β; and recordings from three animals and accepting results observed in two of them strikes an efficient balance between acceptable risks α and β. This framework gives a formal justification for the rule of thumb of using at least two animals in NHP studies, suggests that recording from three animals when possible markedly improves statistical power, provides a statistical solution for situations where results are not consistent between all animals, and may apply to other types of studies involving few animals.Competing Interest StatementThe authors have declared no competing interest. ER -