PT - JOURNAL ARTICLE AU - Sagen E. Flowers AU - Rushali Kothari AU - Yamila N. Torres Cleuren AU - Melissa R. Alcorn AU - Chee Kiang Ewe AU - Geneva Alok AU - Pradeep M. Joshi AU - Joel H. Rothman TI - Regulation of defective mitochondrial DNA accumulation and transmission in <em>C. elegans</em> by the programmed cell death and aging pathways AID - 10.1101/2021.10.27.466108 DP - 2022 Jan 01 TA - bioRxiv PG - 2021.10.27.466108 4099 - http://biorxiv.org/content/early/2022/05/11/2021.10.27.466108.short 4100 - http://biorxiv.org/content/early/2022/05/11/2021.10.27.466108.full AB - The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). “Purifying selection” mechanisms operate to remove such dysfunctional mtDNAs. We found that activators of programmed cell death (PCD), including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1 kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-dependent accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and the aging program are required for germline mtDNA quality control and its intergenerational transmission.Competing Interest StatementThe authors have declared no competing interest.