%0 Journal Article
%A Dominic G. Whittaker
%A Jiahui Wang
%A Joseph G. Shuttleworth
%A Ravichandra Venkateshappa
%A Jacob M. Kemp
%A Thomas W. Claydon
%A Gary R. Mirams
%T Ion channel model reduction using manifold boundaries
%D 2022
%R 10.1101/2022.03.11.483794
%J bioRxiv
%P 2022.03.11.483794
%X Mathematical models of voltage-gated ion channels are used in basic research, industrial and clinical settings. These models range in complexity, but typically contain numerous variables representing the proportion of channels in a given state, and parameters describing the voltage-dependent rates of transition between states. An open problem is selecting the appropriate degree of complexity and structure for an ion channel model given data availability. Here, we simplify a model of the cardiac human Ether-à-go-go Related Gene (hERG) potassium ion channel, which carries cardiac IKr, using the manifold boundary approximation method (MBAM). The MBAM approximates high-dimensional model-output manifolds by reduced models describing their boundaries, resulting in models with fewer parameters (and often variables). We produced a series of models of reducing complexity starting from an established 5-state hERG model with 15 parameters. Models with up to 3 fewer states and 8 fewer parameters were shown to retain much of the predictive capability of the full model and were validated using experimental hERG1a data collected in HEK293 cells at 37°C. The method provides a way to simplify complex models of ion channels that improves parameter identifiability and will aid in future model development.Competing Interest StatementThe authors have declared no competing interest.
%U https://www.biorxiv.org/content/biorxiv/early/2022/05/16/2022.03.11.483794.full.pdf