RT Journal Article SR Electronic T1 SARS-CoV-2 ORF1abA1061S potentiate autoreactive T cell responses via epitope mimicry: an explanation to hepatitis of unknown cause JF bioRxiv FD Cold Spring Harbor Laboratory SP 2022.05.16.491922 DO 10.1101/2022.05.16.491922 A1 Yu Wang A1 Yuexing Liu YR 2022 UL http://biorxiv.org/content/early/2022/05/20/2022.05.16.491922.abstract AB The World Health Organization have recently announced outbreak news of acute, severe hepatitis of unknown cause in children under a Covid-19 pandemic. Whether it is associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still under debating. Here, we performed genomic sequence alignment analysis of the genome of SARS-Cov-2 (Wuhan-hu-1) to the human genome reference. Sequence analysis revealed that the SARS-CoV-2 ORF1ab1056-1173 presented high identities with the human protein PAPR1453-176(3Q6Z_A). After searching the fully sequenced SARS-CoV-2 genomes deposited in GISAID (https://www.gisaid.org/), we detected 170 SARS-CoV-2 variants with mutation in ORF1ab1061, where alanine (A) was substituted by serine (S). This alteration made a 7-amino acid peptide (VVVNASN) in ORF1ab1056-1062 identical to its counterpart in PARP1453-59(3Q6Z_A). HLA prediction suggested that the peptides with high identities in PARP14 and ORF1ab could be presented by a same globally prevalent HLA-A*11:01 molecule. And in consistent with the first reported case of hepatitis of unknown, SARS-CoV-2 ORF1abVVVNASN variants were mostly identified as Delta lineages in UK by the late 2021, with an overall frequency of 0.00161%. Thus, our preliminary results raised a possibility that infection by SARS-CoV-2 ORF1abVVVNASN variant might elicit an autoimmune T cell response via epitope mimicry and is associated with the outbreak of unknown hepatitis. We anticipated that these findings will alert the human societies to pay more attention to rare mutations beyond the spike proteins.Competing Interest StatementThe authors have declared no competing interest.