RT Journal Article SR Electronic T1 RL mechanisms of short-term plasticity of auditory cortex JF bioRxiv FD Cold Spring Harbor Laboratory SP 093138 DO 10.1101/093138 A1 Krugliakova, Elena A1 Gorin, Alexey A1 Shestakova, Anna A1 Fedele, Tommaso A1 Klucharev, Vasily YR 2016 UL http://biorxiv.org/content/early/2016/12/11/093138.abstract AB The decision-making process is exposed to modulatory factors, and, according to the expected value (EV) concept the two most influential factors are magnitude of prospective behavioural outcome and probability of receiving this outcome. The discrepancy between received and predicted outcomes is reflected by the reward prediction error (RPE), which is believed to play a crucial role in learning in dynamic environment. Feedback related negativity (FRN), a frontocentral negative component registered in EEG during feedback presentation, has been suggested as a neural signature of RPE. In modern neurobiological models of decision-making the primary sensory input is assumed to be constant over the time and independent of the evaluation of the option associated to it. In this study we investigated whether the electrophysiological changes in auditory cues perception is modulated by the strengths of reinforcement signal, represented in the EEG as FRN.We quantified the changes in sensory processing through a classical passive oddball paradigm before and after performance a neuroeconomic monetary incentive delay (MID) task. Outcome magnitude and probability were encoded in the physical characteristics of auditory incentive cues. We evaluated the association between individual biomarkers of reinforcement signal (FRN) and the degree of perceptual learning, reflected by changes in auditory ERP components (mismatch negativity and P3a). We observed a significant correlation of MMN and valence - dFRN, reflecting differential processing of gains and omission of gains. Changes in P3a were correlated to probability - dFRN, including information on salience of the outcome, in addition to its valence.MID task performance evokes plastic changes associated with more fine-grained discrimination of auditory anticipatory cues and enhanced involuntary attention switch towards these cues. Observed signatures of neuro-plasticity of the auditory cortex may play an important role in learning and decision-making processes through facilitation of perceptual discrimination of valuable external stimuli. Thus, the sensory processing of options and the evaluation of options are not independent as implicitly assumed by the modern neuroeconomics models of decision-making.