PT - JOURNAL ARTICLE AU - Katherine Dougan AU - Zhi-Luo Deng AU - Lars Wöhlbrand AU - Carsten Reuse AU - Boyke Bunk AU - Yibi Chen AU - Juliane Hartlich AU - Karsten Hiller AU - Uwe John AU - Jana Kalvelage AU - Johannes Mansky AU - Meina Neumann-Schaal AU - Jörg Overmann AU - Jörn Petersen AU - Selene Sanchez AU - Kerstin Schmidt-Hohagen AU - Sarah Shah AU - Cathrin Spröer AU - Helena Sztajer AU - Hui Wang AU - Debashish Bhattacharya AU - Ralf Rabus AU - Dieter Jahn AU - Cheong Xin Chan AU - Irene Wagner-Döbler TI - Evolution of resilience against heat stress in a red-tide dinoflagellate AID - 10.1101/2022.07.25.501386 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.07.25.501386 4099 - http://biorxiv.org/content/early/2022/07/25/2022.07.25.501386.short 4100 - http://biorxiv.org/content/early/2022/07/25/2022.07.25.501386.full AB - Dinoflagellates are a large, ecologically important phylum of marine unicellular algae. Their huge genomes make it highly challenging to decipher the genetic basis of key processes such as harmful algal bloom (HAB) formation and response to warming oceans. To address these issues, we generated a high quality genome assembly from Prorocentrum cordatum, a globally abundant, HAB forming dinoflagellate. Our analyses demonstrate massive expansion of the gene inventory to 85,849 predicted genes, primarily driven by unusually long and frequent introns and dispersed duplicates enriched for bloom relevant functions. We find that cell yield is reduced at higher culture temperatures. To understand this response, we integrated transcriptome, proteome and metabolome data and identified both a global and a temperature specific heat-stress response. The underlying metabolic changes reflect damage to photosynthesis and central metabolism. The transcriptome data show that ∼25% of genes are differentially expressed under heat stress, with concomittant extensive RNA editing and alternative exon usage. Multi-codon genes and transcripts for HSP70 and RuBisCo suggest a polycistronic gene organisation. Our work represents the first genome based analysis of a red tide dinoflagellate and demonstrates that temperature resilience in P. cordatum is mediated by a unique genome structure and multi-level transcriptional regulation.Competing Interest StatementThe authors have declared no competing interest.