PT - JOURNAL ARTICLE AU - Chadwick, Benjamin J. AU - Pham, Tuyetnhu AU - Xie, Xiaofeng AU - Ristow, Laura C. AU - Krysan, Damian J. AU - Lin, Xiaorong TI - The RAM signaling pathway links morphology, thermotolerance, and CO<sub>2</sub> tolerance in the global fungal pathogen <em>Cryptococcus neoformans</em> AID - 10.1101/2022.08.14.503895 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.08.14.503895 4099 - http://biorxiv.org/content/early/2022/08/14/2022.08.14.503895.short 4100 - http://biorxiv.org/content/early/2022/08/14/2022.08.14.503895.full AB - The environmental pathogen Cryptococcus neoformans claims over 180,000 lives each year. Survival of this basidiomycete at host CO2 concentrations has only recently been considered an important virulence trait. Through screening gene knockout libraries constructed in a CO2-tolerant clinical strain, we found mutations leading to CO2 sensitivity are enriched in pathways activated by heat stress, including calcineurin, Ras1-Cdc24, cell wall integrity, and Regulator of Ace2 and Morphogenesis (RAM). Overexpression of Cbk1, the conserved terminal kinase of the RAM pathway, partially restored defects of these mutants at host CO2 or temperature levels. In ascomycetes such as Saccharomyces cerevisiae and Candida albicans, transcription factor Ace2 is an important target of Cbk1, activating genes responsible for cell separation. However, no Ace2 homolog or any downstream component of the RAM pathway has been identified in basidiomycetes. Through in vitro evolution and comparative genomics, we characterized mutations in suppressors of cbk1Δ in C. neoformans that partially rescued defects in CO2 tolerance, thermotolerance, and morphology. One suppressor is the RNA translation repressor Ssd1, which is highly conserved in ascomycetes and basidiomycetes. The other is a novel ribonuclease domain-containing protein, here named PSC1, which is present in basidiomycetes and humans but surprisingly absent in most ascomycetes. Loss of Ssd1 in cbk1Δ partially restored cryptococcal ability to survive and amplify in the inhalation and intravenous murine models of cryptococcosis. Our discoveries highlight the overlapping regulation of CO2 tolerance and thermotolerance, the essential role of the RAM pathway in cryptococcal adaptation to the host condition, and the potential importance of post-transcriptional control of virulence traits in this global pathogen.Competing Interest StatementThe authors have declared no competing interest.