PT - JOURNAL ARTICLE AU - Lee, Brian K. AU - Mayhew, Emily J. AU - Sanchez-Lengeling, Benjamin AU - Wei, Jennifer N. AU - Qian, Wesley W. AU - Little, Kelsie AU - Andres, Matthew AU - Nguyen, Britney B. AU - Moloy, Theresa AU - Parker, Jane K. AU - Gerkin, Richard C. AU - Mainland, Joel D. AU - Wiltschko, Alexander B. TI - A Principal Odor Map Unifies Diverse Tasks in Human Olfactory Perception AID - 10.1101/2022.09.01.504602 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.09.01.504602 4099 - http://biorxiv.org/content/early/2022/09/06/2022.09.01.504602.short 4100 - http://biorxiv.org/content/early/2022/09/06/2022.09.01.504602.full AB - Mapping molecular structure to odor perception is a key challenge in olfaction. Here, we use graph neural networks (GNN) to generate a Principal Odor Map (POM) that preserves perceptual relationships and enables odor quality prediction for novel odorants. The model is as reliable as a human in describing odor quality: on a prospective validation set of 400 novel odorants, the model-generated odor profile more closely matched the trained panel mean (n=15) than did the median panelist. Applying simple, interpretable, theoretically-rooted transformations, the POM outperformed chemoinformatic models on several other odor prediction tasks, indicating that the POM successfully encoded a generalized map of structure-odor relationships. This approach broadly enables odor prediction and paves the way toward digitizing odors.One-Sentence Summary An odor map achieves human-level odor description performance and generalizes to diverse odor-prediction tasks.Competing Interest StatementThe authors have declared no competing interest.