PT - JOURNAL ARTICLE AU - Tao Zhang AU - Sarah E. Noll AU - Jesus T. Peng AU - Amman Klair AU - Abigail Tripka AU - Nathan Stutzman AU - Casey Cheng AU - Richard N. Zare AU - Alexandra J. Dickinson TI - Chemical Imaging Reveals Diverse Functions of Tricarboxylic Acid Metabolites in Root Growth and Development AID - 10.1101/2022.10.04.510836 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.10.04.510836 4099 - http://biorxiv.org/content/early/2022/10/05/2022.10.04.510836.short 4100 - http://biorxiv.org/content/early/2022/10/05/2022.10.04.510836.full AB - Understanding how plants grow is critical for agriculture and fundamental for illuminating principles of multicellular development 1. Here, we apply chemical mapping of the developing maize root using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) 2. This technique reveals a range of small molecule distribution patterns across the gradient of stem cell differentiation in the root. To understand the developmental logic of these patterns, we examined tricarboxylic acid (TCA) cycle metabolites. In both Arabidopsis and maize, TCA metabolites are enriched in developmentally opposing regions, suggesting that stem-cell specific TCA metabolite localization may be conserved in evolutionarily divergent species. We find that these metabolites, particularly succinate, aconitate, citrate, and α-ketoglutarate, control root development in diverse and distinct ways. Critically, the effects of metabolites on stem cell behavior can be independent of their canonical role in ATP production. These results present new insights into development and suggest practical means for controlling plant growth.Competing Interest StatementThe authors have declared no competing interest.