PT - JOURNAL ARTICLE AU - Chuwen Zhang AU - Xinyue Liu AU - Ling-Dong Shi AU - Jiwei Li AU - Xi Xiao AU - Zongze Shao AU - Xiyang Dong TI - Novel and unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments AID - 10.1101/2022.11.20.517286 DP - 2022 Jan 01 TA - bioRxiv PG - 2022.11.20.517286 4099 - http://biorxiv.org/content/early/2022/11/21/2022.11.20.517286.short 4100 - http://biorxiv.org/content/early/2022/11/21/2022.11.20.517286.full AB - Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, showed strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As resistance genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As-cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As-cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.Competing Interest StatementThe authors have declared no competing interest.