RT Journal Article SR Electronic T1 Fitting agent-based models to tumor images using representation learning JF bioRxiv FD Cold Spring Harbor Laboratory SP 2023.01.12.523847 DO 10.1101/2023.01.12.523847 A1 Cess, Colin G. A1 Finley, Stacey D. YR 2023 UL http://biorxiv.org/content/early/2023/01/14/2023.01.12.523847.abstract AB Agent-based models (ABMs) have enabled great advances in the study of tumor development and therapeutic response, allowing researchers to explore the spatiotemporal evolution of the tumor and its microenvironment. However, these models face serious drawbacks in the realm of parameterization – ABM parameters are typically set individually based on various data and literature sources, rather than through a rigorous parameter estimation approach. While ABMs can be fit to time-course data, that type of data loses the spatial information that is a defining feature of ABMs. Tumor images provide spatial information; however, such images only represent individual timepoints, limiting their utility in calibrating the tumor dynamics predicted by ABMs. Furthermore, it is exceedingly difficult to compare tumor images to ABM simulations beyond a qualitative visual comparison. Without a quantitative method of comparing the similarity of tumor images to ABM simulations, a rigorous parameter fitting is not possible. Here, we present a novel approach that applies neural networks to represent both tumor images and ABM simulations as low dimensional points, with the distance between points acting as a quantitative measure of difference between the two. This enables a quantitative comparison of tumor images and ABM simulations, where the distance between simulated and experimental images can be minimized using standard parameter-fitting algorithms. Here, we describe this method and present two examples to demonstrate the application of the approach to estimate parameters for two distinct ABMs. Overall, we provide a novel method to robustly estimate ABM parameters.Competing Interest StatementThe authors have declared no competing interest.