%0 Journal Article %A Nicholas M. Boffi %A Yipei Guo %A Chris H. Rycroft %A Ariel Amir %T How microscopic epistasis and clonal interference shape the fitness trajectory in a spin glass model of microbial long-term evolution %D 2023 %R 10.1101/2023.01.16.524306 %J bioRxiv %P 2023.01.16.524306 %X The adaptive dynamics of evolving microbial populations takes place on a complex fitness landscape generated by epistatic interactions. The population generically consists of multiple competing strains, a phenomenon known as clonal interference. Microscopic epistasis and clonal interference are central aspects of evolution in microbes, but their combined effects on the functional form of the population’s mean fitness are poorly understood. Here, we develop a computational method that resolves the full microscopic complexity of an evolving population subject to a standard serial dilution protocol. We find that stronger microscopic epistasis gives rise to fitness trajectories with slower growth independent of the number of competing strains, which we quantify with power-law fits and understand mechanistically via a random walk model that neglects dynamical correlations between genes. We show that clonal interference leads to fitness trajectories with faster growth (in functional form) without microscopic epistasis, but has a negligible effect when epistasis is sufficiently strong, indicating that the role of clonal interference depends intimately on the underlying fitness landscape.Competing Interest StatementThe authors have declared no competing interest. %U https://www.biorxiv.org/content/biorxiv/early/2023/01/20/2023.01.16.524306.full.pdf