RT Journal Article SR Electronic T1 Sodium nitroprusside prevents the detrimental effects of glucose on the neurovascular unit and behaviour in zebrafish JF bioRxiv FD Cold Spring Harbor Laboratory SP 576942 DO 10.1101/576942 A1 K. Chhabria A1 A. Vouros A1 C. Gray A1 R.B. MacDonald A1 Z. Jiang A1 R.N. Wilkinson A1 K Plant A1 E. Vasilaki A1 C. Howarth A1 T.J.A. Chico YR 2019 UL http://biorxiv.org/content/early/2019/03/19/576942.abstract AB Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood, and currently no treatment exists to prevent these negative effects. We previously found that the NO donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish and the ability of SNP to prevent these.We incubated 4 days post fertilisation (dpf) zebrafish embryos in 20mM glucose or mannitol for five days until 9dpf, with or without 0.1mM SNP co-treatment for 24h (8-9dpf), and quantified vascular nitric oxide reactivity, vascular mural cell number, expression of a klf2a reporter, glial fibrillary acidic protein (GFAP) and TRPV4, as well as spontaneous neuronal activation at 9dpf, all in the optic tectum. We also assessed the effect on light/dark preference and locomotory characteristics during free-swimming studies.We find that glucose exposure significantly reduced nitric oxide reactivity, klf2a reporter expression, vascular mural cell number and TRPV4 expression, while significantly increasing spontaneous neuronal activation and GFAP expression (all in the optic tectum). Furthermore, when we examined larval behaviour we found glucose exposure significantly altered light/dark preference and high and low speed locomotion while in light. Co-treatment with SNP reversed all these molecular and behavioural effects of glucose exposure.Our findings comprehensively describe the negative effects of glucose exposure on the vascular anatomy, molecular phenotype, and function of the optic tectum and on whole organism behaviour. We also show that SNP or other NO donors may represent a therapeutic strategy to ameliorate the complications of diabetes on the neurovascular unit.