TY - JOUR T1 - An efficient FLP-based toolkit for spatiotemporal control of gene expression in <em>Caenorhabditis elegans</em> JF - bioRxiv DO - 10.1101/107029 SP - 107029 AU - Celia María Muñoz-Jiménez AU - Cristina Ayuso AU - Agnieszka Dobrzynska AU - Antonio Torres AU - De la Cruz Ruiz Patricia AU - Askjaer Peter Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/02/08/107029.abstract N2 - Site-specific recombinases are potent tools to regulate gene expression. In particular, the Cre and FLP enzymes are widely used to either activate or inactivate genes in a precise spatiotemporal manner. Both recombinases work efficiently in the popular model organism Caenorhabditis elegans but their use in this nematode is still only sporadic. To increase the utility of the FLP system in C. elegans we have generated a series of single-copy transgenic strains that stably express an optimized version of FLP in specific tissues or by heat induction. We show that recombination efficiencies reach 100 percent in several cell types, such as muscles, intestine and serotonin producing neurons. Moreover, we demonstrate that most promoters drive recombination exclusively in the expected tissues. As examples of the potentials of the FLP lines we describe novel tools for induced cell ablation by expression of the PEEL-1 toxin and a versatile FLP-out cassette for generation of GFP-tagged conditional knockout alleles. Together with other recombinase-based reagents created by the C. elegans community this toolkit increases the possibilities for detailed analyses of specific biological processes at developmental stages inside intact animals. ER -