PT - JOURNAL ARTICLE AU - Huang, Xin AU - Wong, Brian W. L. AU - Ng, Hezul Tin-Yan AU - Sommer, Werner AU - Dimigen, Olaf AU - Maurer, Urs TI - Neural mechanism underlying preview effects and masked priming effects in visual word processing AID - 10.1101/2023.07.24.550196 DP - 2023 Jan 01 TA - bioRxiv PG - 2023.07.24.550196 4099 - http://biorxiv.org/content/early/2023/07/25/2023.07.24.550196.short 4100 - http://biorxiv.org/content/early/2023/07/25/2023.07.24.550196.full AB - Two classic experimental paradigms – masked repetition priming and the boundary paradigm – have played a pivotal role in understanding the process of visual word recognition. Traditionally, these paradigms have often been employed by different communities of researchers, with their own long-standing research traditions. Nevertheless, a review of the literature suggests that the brain-electric correlates of word processing established with both paradigms may show interesting similarities, in particular with regard to the location, timing, and direction of N1 and N250 effects. However, as of yet, no direct comparison has been undertaken between both paradigms. In the current study, we used combined eye-tracking/EEG to perform such a within-subject comparison using the same materials (single Chinese characters) as stimuli. Our results show the typical early repetition effects of N1 and N250 for both paradigms. However, repetition effects in N250 (i.e., a reduced negativity following identical-word primes/previews as compared to different-word primes/previews) were larger in the boundary paradigm than with masked priming. For N1 effects, repetition effects were similar across the two paradigms showing a larger N1 after repetitions as compared to alternations. Therefore, the results indicate that at the neural level, a briefly presented and masked foveal prime produces qualitatively similar facilitatory effects on visual word recognition as a parafoveal preview before a saccade, although such effects appear to be stronger in the latter case.Competing Interest StatementThe authors have declared no competing interest.