PT - JOURNAL ARTICLE AU - Yang, Yitao AU - Cui, Yang AU - Zeng, Xin AU - Zhang, Yubo AU - Loza, Martin AU - Park, Sung-Joon AU - Nakai, Kenta TI - STAIG: Spatial Transcriptomics Analysis via Image-Aided Graph Contrastive Learning for Domain Exploration and Alignment-Free Integration AID - 10.1101/2023.12.18.572279 DP - 2024 Jan 01 TA - bioRxiv PG - 2023.12.18.572279 4099 - http://biorxiv.org/content/early/2024/01/02/2023.12.18.572279.short 4100 - http://biorxiv.org/content/early/2024/01/02/2023.12.18.572279.full AB - Spatial transcriptomics is an essential application for investigating cellular structures and interactions and requires multimodal information to precisely study spatial domains. Here, we propose STAIG, a novel deep-learning model that integrates gene expression, spatial coordinates, and histological images using graph-contrastive learning coupled with high-performance feature extraction. STAIG can integrate tissue slices without prealignment and remove batch effects. Moreover, it was designed to accept data acquired from various platforms, with or without histological images. By performing extensive benchmarks, we demonstrated the capability of STAIG to recognize spatial regions with high precision and uncover new insights into tumor microenvironments, highlighting its promising potential in deciphering spatial biological intricates.Competing Interest StatementThe authors have declared no competing interest.